Recall the $W Z W$ action $(g: \Sigma \rightarrow G)$:

$$
I(g)=-\frac{i}{4 \pi} \int_{\Sigma} d^{2} \sigma \sqrt{p} \rho^{i} \partial \operatorname{Tr}\left(g^{-1} \partial_{i} g \cdot g^{-1} \partial_{j} \cdot g\right)-i \Gamma(g)
$$

where ρ is a metric on \sum and Γ is the Wess-Zumino term $(\partial B=\Sigma)$:

$$
\begin{aligned}
\Gamma(g) & =\int_{B} g^{*} \omega \\
& =\frac{1}{12 \pi} \operatorname{Tr}\left(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g\right) \\
& =\frac{1}{12 \pi} \int_{B} d^{3} \sigma \varepsilon^{i j k} \operatorname{Tr} g^{-1} \partial_{i} g \cdot g^{-1} \partial_{j} \cdot g \cdot g^{-1} \partial_{k} g
\end{aligned}
$$

The partition function of the wa w model is formally defined as a path integral:

$$
Z=\int D g e^{-k I}
$$

conformal invariance $\rightarrow Z$ depends coly on complex str. determined by ρ.
conformal block representation:

$$
z=\sum_{i} f_{i} \bar{f}_{i}=\left(f_{1} f\right)
$$

where f_{i} satisfy the $k z$ equation. global symmetry:
The $w z w$ action is invariant under the action of $G \times G=G_{L} \times G_{R}$:

$$
g \longmapsto a g b^{-1}, \quad a \in G_{L}, b \in G_{R}
$$

ganging wZw models:
take g to be section of a bundle $X \rightarrow \sum$ with fiber G and structure group $G_{L} \times G_{R}$ ar a subgroup
(instead of a map gi $\Sigma \rightarrow G$)
condition for ganging:
existence of "anomaly free" subgroup F

$$
\text { of } G_{L} \times G_{R}: T_{r_{L}} t t^{\prime}-T_{r_{R}} t t^{\prime}=0, t, t^{\prime} \in \mathcal{f}(x)
$$

(F is Lie algebra of F).
Holomorphic wave-function:
take $F=G_{R}$ and define

$$
I(g, A)=I(g)+\frac{1}{4 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} A_{\bar{z}} g^{-1} \partial_{z} g-\frac{1}{8 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} A_{\bar{z}} A_{z}
$$

Then, under an infinitesimal gauge tref.:

$$
\delta g=-g u, \quad \delta A_{i}=-D_{i} u=-\partial_{i} u-\left[A_{i}, u\right]
$$

one has

$$
\begin{aligned}
\delta I(g, A) & =\frac{1}{8 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} u\left(\partial_{z} A_{\bar{z}}-\partial_{\bar{z}} A_{z}\right) \\
& =\frac{i}{8 \pi} \int_{\Sigma} \operatorname{Tr} u d A, \quad \begin{array}{l}
\text { (anomaly) } \begin{array}{l}
\text { as }(x) \text { is not } \\
\text { obeyed }
\end{array} \\
\text { (exercise) }
\end{array}
\end{aligned}
$$

We now formally define a functional of A by

$$
\begin{aligned}
\underline{\Psi}(A)= & \int D g e^{-k I(g, A)} \\
= & \int D g \exp \left(-k I(g)-\frac{k}{4 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} A_{\bar{z}} g^{-1} \partial_{z} g\right. \\
& \left.+\frac{k}{8 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} A_{\bar{z}} A_{z}\right)
\end{aligned}
$$

I obeys two key equations:

1) $\left(\frac{\delta}{\delta A_{z}}-\frac{k}{8 \pi} A_{\bar{z}}\right) \underline{\Psi}=0 \leftarrow$ (exercise)
2) $\left(D_{\bar{z}} \frac{\delta}{\delta A_{\bar{z}}}+\frac{k}{8 \pi} D_{\bar{z}} A_{z}-\frac{k}{4 \pi} F_{\bar{z} z}\right) \underline{\psi}=0$

Hint for proving 2):
By differentiating under the integral sign, the left-hand side of 2) equals:

$$
-\frac{k}{4 \pi} \int D g e^{-k I(g, A)} \underbrace{\left[D_{\bar{z}}\left(g^{-1} D_{z} g\right)+F_{\bar{z} z}\right]}_{=\delta_{g} I(g, A)}
$$

where we have introduced the covariant derivative $D g=d g-g^{A}$.
\rightarrow path integral vanishes by integration by parts in g space.
Using the covariant derivatives introduced in the last lecture,

$$
\frac{D}{D A_{z}}=\frac{\delta}{\delta A_{z}}-\frac{k}{8 \pi} A_{\bar{z}}, \frac{D}{D A_{\bar{z}}}=\frac{\delta}{\delta A_{\bar{z}}}+\frac{k}{8 \pi} A_{z},
$$

we see that I satisfies

1) $\rightarrow \frac{D}{D A_{z}} \Psi=0$
2) $\rightarrow\left(D_{\bar{z}} \frac{D}{D A_{\bar{z}}}-\frac{k}{4 \pi} F_{\bar{z} z}\right) \Psi=0$
$\rightarrow \Psi$ is Chern-Simons wave-function!

The norm of the wave-function:
Define for every complex Riemann surface D, a vector space V consisting of bol. gauge inv. sections of $\mathcal{Z}^{\otimes k}$ over d. A natural Hermitian structure on V is given by

$$
\left(\Psi_{1}, \Psi_{2}\right)=\frac{1}{v o l(\hat{G})} \int_{\&} D A \bar{\Psi}_{1}(A) \Psi_{2}(A)
$$

To evaluate this pairing, let us first define $\bar{\psi}$:

$$
h: \Sigma \rightarrow G
$$

B gauge field ganging subgroup of G_{L} in $G_{L} \times G_{R}$

$$
\begin{aligned}
& \rightarrow I^{\prime}(h, B)=I(h)-\frac{1}{4 \pi} \int_{\Sigma} d^{\alpha} z \operatorname{Tr} B_{z} \partial_{z} h \cdot h^{-1} \\
&-\frac{1}{8 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} B_{z} B_{\bar{z}}
\end{aligned}
$$

under

$$
\delta h=u h, \quad \delta B_{i}=-D_{i} u,
$$

one has

$$
\delta I^{\prime}(h, B)=-\frac{1}{8 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} u\left(\partial_{z} B_{\bar{z}}-\partial_{\bar{z}} B_{z}\right)
$$

Then define

$$
x(B)=\int \mathscr{D} h e^{-k I^{\prime}(h, B)}
$$

We have $X(A)=\overline{\psi(A)}$
we compute

$$
\begin{aligned}
& |\Psi|^{2}=\frac{1}{\operatorname{vol(\overline {G})}} \int_{\not A} D A \overline{\Psi(A)} \psi(A) \\
& =\frac{1}{\operatorname{vol}(\hat{G})} \int D g D h D A \exp (-k I(g)-k I(h) \\
& -\frac{k}{4 \pi} \int_{\Sigma} d_{z}^{2} \operatorname{Tr} A_{\bar{z}} g^{-1} \partial_{z} g+\frac{k}{4 \pi} \int_{\Sigma} d^{2} \operatorname{Tr} A_{z} \partial_{\bar{z}} h \cdot h^{-1} \\
& \left.+\frac{k}{4 \pi} \int_{\Sigma} d^{2} \operatorname{Tr} A_{\bar{z}} A_{z}\right) \quad(* *)
\end{aligned}
$$

Notice that the integrand is invariant under gauge transformations:

$$
\delta g=-g u, \quad \delta h=u h, \quad \delta A_{i}=-D_{i} u
$$

Since $(* *)$ is quadratic in A, we can perform the Gaussian integral over A
to give

$$
\begin{aligned}
|\Psi|^{2}=\frac{1}{\operatorname{vol}(\hat{G})} & \int \operatorname{Dg} D h \exp (-k I(g)-k I(h) \\
& \left.+\frac{k}{2 \pi} \int_{\sum} d_{z}^{2} \operatorname{Tr} g^{-1} \partial_{z} g \partial_{z}-h \cdot h^{-1}\right)
\end{aligned}
$$

(exercise)
Using the Polyakoo-Wiegman formula,

$$
I(g h)=I(g)+I(h)-\frac{1}{2 \pi} \int_{\Sigma} d^{2} z \operatorname{Tr} g^{-1} \partial_{z} g \partial_{z} h \cdot h^{-1}
$$

one can replace the double integral over g and h by a single integral over $f=g h$ \rightarrow cancel $\operatorname{vol}(\hat{G})$

$$
\rightarrow|\Psi|^{2}=\int \mathcal{D} f e^{-k I(f)}=\underset{T}{z}(\Sigma)
$$

partition function of wow model
Varying the complex structure of \sum
$\Psi(A ; \rho)$ becomes a section of the bundle $\quad \tilde{H}_{Q_{p}} \longrightarrow \underset{\underset{J}{\downarrow}}{\substack{\underset{J}{*}}}$

I $(A ; \rho)$ is anti-holomarphic if it is annihilated by

$$
\nabla^{(1,0)}=\delta^{(1,0)}+\frac{4 \pi}{k} \int_{\Sigma} \delta \rho_{\bar{z} \bar{z}} \operatorname{Tr}^{\frac{D}{D A_{\bar{z}}} \frac{D}{D A_{\bar{z}}}, ~}
$$

We compute

$$
\delta^{(1,0)} \Psi=\int_{(\text {exercise) }}^{1} \mathcal{D g} e^{-k I(A, g)}\left(-\frac{k}{4 \pi} \int_{\Sigma} d^{2} z \delta \rho_{\bar{z} \bar{z}} \rho^{\bar{z} z} \operatorname{Tr}\left(g^{-1} D_{z} g\right)^{2}\right)
$$

where $D_{i} g=\partial_{i} g-g A_{i}$. Similarly,

$$
\frac{D}{D A_{\bar{z}}} \Psi=\int D g e^{-k I(g, A)} \cdot \frac{k}{4 \pi} g^{-1} D_{2} g_{1}
$$

giving

$$
\operatorname{Tr} \frac{D}{D A_{\bar{z}}} \frac{D}{D A_{\bar{z}}} \Psi=\int D \operatorname{Dg} e^{-k I(g, A)} \cdot\left(\frac{k}{4 \pi}\right)^{2} \operatorname{Tr}\left(g^{-} D_{z} g\right)^{2}
$$

Combining, we thus obtain

$$
\nabla^{(1,0)} \bar{\psi}=0
$$

Choosing an orthonormal basis of covariantly constant sections of $V, \quad e_{\alpha}, \alpha=1 \ldots \operatorname{dim} \widetilde{t}_{Q}$,

$$
\psi\left(A_{i} \rho\right)=\sum_{\alpha} e_{\alpha}\left(A_{i} \rho\right) \cdot \overline{f_{\alpha}}(\rho) \Rightarrow Z\left(\sum_{i} \rho\right)=\sum_{\alpha=1}^{\operatorname{dim}_{\mathcal{F}_{\alpha}}}\left|f_{\alpha}\right|^{2}
$$

